The following codes(modified) are from Algorithms in C++ and Core Java Volume I.
Code 1:
// Modified Sieve of Eratosthenes Algorithm // Sieve of Eratosthenes Algorithm // Finding prime numbers less than N #includeCode 2: using bitset#include using namespace std; const int N = 10000; int main() { clock_t cstart = clock(); int a[N]; int i; for ( i = 2; i < N; ++i ) { a[i] = 1; } for( i = 2; i < N; ++i ) { if ( a[i] ) { for( int j = i; j*i < N; ++j ) { a[i*j] = 0; } } } clock_t cend = clock(); double millis = 1000.0 * (cend - cstart) / CLOCKS_PER_SEC; cout << millis << " milliseconds\n"; cout << sizeof(int) << endl; return 0; }
#includeCode 3: using BitSet#include #include using namespace std; const int N = 2000000; int main() { clock_t cstart = clock(); bitset b; int i; int count = 0; b.set(); // set all bits to 1 for(int k = 2; k < N; ++k ) { if ( b.test(k) ) { int j = k; // for( int j = k; j*k < N; ++j ) while ( j*k <= N) { b.reset(j*k); // set j*k bit to 0 ++j; } } } i =2; while ( i <= N) { if (b.test(i)) ++count; ++i; } clock_t cend = clock(); double millis = 1000.0 * (cend - cstart) / CLOCKS_PER_SEC; cout << count << "primes\n" << millis << " milliseconds\n"; return 0; }
import java.util.*;
/**
* This program runs the Sieve of Erathostenes benchmark. It computes all primes up to 2,000,000.
* @version 1.21 2004-08-03
* @author Cay Horstmann
*/
public class Sieve
{
public static void main(String[] s)
{
int n = 2000000;
long start = System.currentTimeMillis();
BitSet b = new BitSet(n + 1);
int count = 0;
int i;
for (i = 2; i <= n; i++)
b.set(i);
i = 2;
while (i * i <= n)
{
if (b.get(i))
{
count++;
int k = 2 * i;
while (k <= n)
{
b.clear(k);
k += i;
}
}
i++;
}
while (i <= n)
{
if (b.get(i)) count++;
i++;
}
long end = System.currentTimeMillis();
System.out.println(count + " primes");
System.out.println((end - start) + " milliseconds");
}
}
No comments:
Post a Comment