The following codes(modified) are from Algorithms in C++ and Core Java Volume I.
Code 1:
// Modified Sieve of Eratosthenes Algorithm // Sieve of Eratosthenes Algorithm // Finding prime numbers less than N #includeCode 2: using bitset#include using namespace std; const int N = 10000; int main() { clock_t cstart = clock(); int a[N]; int i; for ( i = 2; i < N; ++i ) { a[i] = 1; } for( i = 2; i < N; ++i ) { if ( a[i] ) { for( int j = i; j*i < N; ++j ) { a[i*j] = 0; } } } clock_t cend = clock(); double millis = 1000.0 * (cend - cstart) / CLOCKS_PER_SEC; cout << millis << " milliseconds\n"; cout << sizeof(int) << endl; return 0; }
#includeCode 3: using BitSet#include #include using namespace std; const int N = 2000000; int main() { clock_t cstart = clock(); bitset b; int i; int count = 0; b.set(); // set all bits to 1 for(int k = 2; k < N; ++k ) { if ( b.test(k) ) { int j = k; // for( int j = k; j*k < N; ++j ) while ( j*k <= N) { b.reset(j*k); // set j*k bit to 0 ++j; } } } i =2; while ( i <= N) { if (b.test(i)) ++count; ++i; } clock_t cend = clock(); double millis = 1000.0 * (cend - cstart) / CLOCKS_PER_SEC; cout << count << "primes\n" << millis << " milliseconds\n"; return 0; }
import java.util.*; /** * This program runs the Sieve of Erathostenes benchmark. It computes all primes up to 2,000,000. * @version 1.21 2004-08-03 * @author Cay Horstmann */ public class Sieve { public static void main(String[] s) { int n = 2000000; long start = System.currentTimeMillis(); BitSet b = new BitSet(n + 1); int count = 0; int i; for (i = 2; i <= n; i++) b.set(i); i = 2; while (i * i <= n) { if (b.get(i)) { count++; int k = 2 * i; while (k <= n) { b.clear(k); k += i; } } i++; } while (i <= n) { if (b.get(i)) count++; i++; } long end = System.currentTimeMillis(); System.out.println(count + " primes"); System.out.println((end - start) + " milliseconds"); } }
No comments:
Post a Comment